If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2500+5000x-750x^2=0
a = -750; b = 5000; c = -2500;
Δ = b2-4ac
Δ = 50002-4·(-750)·(-2500)
Δ = 17500000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{17500000}=\sqrt{250000*70}=\sqrt{250000}*\sqrt{70}=500\sqrt{70}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5000)-500\sqrt{70}}{2*-750}=\frac{-5000-500\sqrt{70}}{-1500} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5000)+500\sqrt{70}}{2*-750}=\frac{-5000+500\sqrt{70}}{-1500} $
| 9u=-54 | | 5/x+6=21 | | 2=-2(2+z) | | 4(d+(-2))=-8 | | -28=5v+7(v+8) | | 4n-20=-3-32 | | r+2=6r-18 | | ((x+2)^2)^2=0 | | 12=7w-8w | | 5.x^2-14=6 | | 48.25+15.75w=158.50 | | -2=-2(v+10) | | (x+14)^2+844=0 | | x-11+73+x=180 | | -5(e+6)=11 | | 10(s-11)=-100 | | -37-4a=23 | | h-79/2=9 | | x/5/6x-1/3=2x-5 | | 6x-14=8x-11 | | 1/4y+20=7 | | 20=10(u-8) | | 3x^2+98=0 | | 1966071.14=(x+0.10x)+0.05(x+0.10x) | | 1/2y+2/5=42/5y | | 5(x-6)=-30x+5x | | 4t-3t=19 | | 10x-20=35 | | (x+4)/5=3 | | 40=9s+4 | | 1/4a=13/6 | | 21/3m=42/3 |